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Parametric Response of an Axially Moving 
Viscoelastic Beam With Three-Mode Interaction   
 

Usama H. Hegazy  
 
Abstract—The response of axially moving 3D-beam, supported by nonlinear viscoelastic foundation under parametric excitation, is discussed and 
the governing  nonlinear partial differential equation of motion is discretized into ordinary differential equations using 3-term Galerkin method. The 
approximate solutions are obtained applying the multiple scales perturbation technique and the case of external subharmonic resonance and 1:1:1  
internal resonance are considered. The effects of viscoelastic coefficient, nonlinear coefficients, stiffness, and axial moving speed as well as the 
magnitude of the parametric excitation on the frequency responses are investigated.  
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1. INTRODUCTION 
 

ang et al. [1] considered axially moving viscoelastic 
beam under multi-frequency excitations and used 1-

term Galerkin method to reduce the derived nonlinear 
partial differential equation of motion to ordinary equation. 
The method of multiple scales method is utilized to obtain 
the approximate solutions of the transverse vibration of the 
beam which are compared with numerical results. Oz and 
Pakdermirli [2] and Ozkaya and Pakdermirli [3] studied the 
dynamic vibration of an axially moving beam with time-
dependent velocity and with small flexural stiffness. The 
multiple scales method is applied directly to the nonlinear 
partial differential equation of motion. Yang and Chen [4] 
derived the governing partial differential equation of motion 
of an axially accelerating beam, based on the Kelvin-Voigt 
model. The Galerkin method is applied to obtain two 
dimensional ordinary differential equations. Poincare maps, 
the phase plane and the largest Lyapunov exponent are 
employed to investigate numerically the nonlinear dynamic 
response of the model with time-varying transport speed. 
The effects of the mean axial speed, the amplitude of the 
speed fluctuation and the dynamic viscoelasticity are shown 
using bifurcation diagrams. Argyris et al. [5] investigated 
the chaotic and regular responses of a nonlinear viscoelastic 
beam subjected to a periodically forced excitation using the 
Poincare mapping and the Lyapunov exponent techniques. 
It is shown that the system possesses a very complex fractal 
geometry when the basins of attraction are plotted. 
Adetunde and Seidu [6] studied the dynamic behavior of a 
viscously damped Rayleigh beam to axial force and   
obtained the numerical solution of the governing differential  
equation by the finite central difference method. It is found 
that the mass of the moving load depends on the deflection 
along the length of the beam and that the deflection of the 
moving mass is greater than that of the moving force [6]. 
Xiao-dong and Li-qun [7] used the averaging method to 
study the stability of an axially moving beam with pulsating 
speed at subharmonic and combination resonances and 

verified the analytical results numerically. It is shown that as 
the steady speed or the compression tension is increased the 
instability region gets larger, whereas increasing the 
viscoelastic damping leads to a small instability region. Lee 
and Oh [8] developed a spectral element model for an 
axially moving viscoelastic beam subject to axial tension and 
investigated the effects of moving speed and viscoelasticity 
on the stability of the system. It is found that in the case of 
pure elastic moving beam, a single coupled-mode flutter 
may occur, while for the case of viscoelastic moving beam, 
only first natural mode becomes unstable with flutter. 
Ansari et al. [9] used the Galerkin method to reduce  the 
governing partial differential equation of a nonlinear 
viscoelastic beam under moving load to three dimensional 
nonlinear ordinary differential equations. The multiple 
scales perturbation technique is utilized to investigate the 
responses of the three modes of the vibrating system 
considering several internal-external resonance cases. The 
effects of different parameters on the system behavior are 
also studied. Chen et al. [10] investigated the nonplanar 
nonlinear chaotic oscillations and bifurcations of an axially 
accelerating moving viscoelastic beam. A three and six 
ordinary differential governing equations with parametric 
excitations are obtained from the established governing 
equations of motion, using the generalized Hamilton’s 
principle. Numerical investigations are performed using the 
Poincare maps, the phase planes and the largest Lyapunov 
exponents. It is shown that the three and the six d.o.f 
systems have very different nonlinear dynamic responses. 
 

In this paper, the nonlinear dynamic response of an axially 
moving 3-D beam on elastic foundation is investigated. The 
Galerkin method is used to discretize the governing 
nonlinear partial differential equation of the beam under 
parametric excitation. The method of multiple scales is 
utilized and the case in which there simultaneously exist 
principal parametric resonance and primary internal 
resonance for the three modes of the vibrating beam is 
considered. The steady-state responses are studied by 
solving numerically the resonant frequency response 
equations. A comprehensive numerical investigation is 
carried out to show the effect of different parameters on the 
dynamic performance of each mode of vibration.   
2. PROBLEM FORMULATION  
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The nondimensional equation governing the 
transverse motion of an axially moving viscoelastic beam 
has been modified as follows [1]: 
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The beam is assumed simply supported at both ends with 
the boundary conditions 

(0, ) (1, ) 0u t u t= = ; 
2 2

2 2

(0, ) (1, ) 0u t u t
x x

∂ ∂
= =

∂ ∂
         (2) 

 
where u is the transverse displacement, c is the axial 
constant velocity, α is the viscoelastic coefficient, β is the 
flexural stiffness, δ is a nonlinear coefficient and F is the 
parametric excitation. These parameters can be found in ref. 
[1]. The Galerkin method is applied to discretize the 
governing partial differential equation of the model (1)  with 
the following expansion in u 

1
( , ) ( )sin( )n

n
u x t q t n xπ

∞

=

=∑
               (3) 

where q(t) is the amplitude of the fundamental transverse 
mode and setting n = 3, n denotes number of modes of 
vibrations, results in three degrees of freedom equations. 
Substituting equation (3) in equation (1), applying the 
principle of orthogonality of mode shapes and multiplying 
the resulting equation by sin(nπx) then performing 
integration over the interval [0, 1] gives:  
 

(
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where 2 2 2 2 4 2 4(1 ) ( )k k c kω π β π= − + , k = 1,2,3 are the 

natural frequencies of the three modes, 4
1

1 ,
4

α π δ=  

2 5 14 ,α α α= =  3 8 19 ,α α α= = 4 24 ,α α=  

6 9 29 ,α α α= =  7 281α α= are nonlinear coefficients. 
4

1 ,µ π α= 2 116 ,µ µ= 3 181 ,µ µ= 4
16 ,
3

cµ = 5 4
9
5

µ µ=  

are the damping coefficients. F, G, H and Ω j  (j =1,2,3) are the 

forcing amplitudes and frequencies, τ j  (j =1,2,3) are 
constants.  
 
3. PERTURBATION ANALYSIS 

In equations (4-6), ε is assumed to be a small 
dimensionless bookkeeping parameter. The method of 
multiple scales is utilized to determine a first-order uniform 
expansion for the solution of equations (4-6) in the form. 

2
0 0 1 1 0 1( , ) ( , ) ( , ) ( ),j j jq t q T T q T T Oε ε ε= + +  j = 1,2,3         (7) 

where, n
nT tε= and T0 = t . 

By substituting equation (7) into equations (4-6) and 
equating the coefficients of the same powers of ε we obtain 
the following differential equations 
 
Order 0 2 2

0 0: ( ) 0j jD qε ω+ = , j = 1,2,3               (8) 

 

Order 1 :ε
2 2
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3 2
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        2
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( ) 2D q D D q D q

D q D q q

ω µ

µ µ α
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+ − −  
      2 2
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2 2
0 3 31 0 1 30 3 0 30

3 2
4 0 20 7 30 8 30 10

( ) 2D q D D q D q

D q q q q

ω µ

µ α α

+ = − −

− − −  
      2

9 30 20 3 3cos( ).q q H tα τ− + Ω +       (11) 

 
The solution of equation (8) can be written as 
 

0 0 1 1 0( , ) ( ) exp( ) ,j j jq T T A T i T ccω= +  j = 1,2,3               (12) 

 
where A j  are complex functions in T1 (cc denotes a complex 
conjugate of the preceding terms). Substituting equation (12) 
into equations (9-11), we get 
 

2 2 2
0 1 11 1 1 1 1 4 2 2 1 1 1 2 1 2 2( ) [ (2 ) 3 2D q i A A i A A A A A Aω ω µ µ ω α α′+ = − + + − −

                           3 1 3 3 1 02 ]exp( )A A A i Tα ω−  
3

1 1 1 0exp(3 )A i Tα ω−  

                           
2

2 1 2 1 2 0exp( ( 2 ) )A A i Tα ω ω− +    

                           
2

2 1 2 1 2 0exp( ( 2 ) )A A i Tα ω ω− − −    

                           
2

3 1 3 1 3 0exp( ( 2 ) )A A i Tα ω ω− − +  

                           
2

3 1 3 1 3 0exp( ( 2 ) )A A i Tα ω ω− − −  

1 1 1 0 1 1 1 1 0 1[ exp( ( ) ) exp( ( ) )] ,
2
F A i T A i T ccω τ ω τ+ Ω + + + Ω − + +  (13)                       

2 2 2
0 2 21 2 2 2 2 5 3 3 4 1 1 4 2 2( ) [ (2 ) 3D q i A A i A i A A Aω ω µ µ ω µ ω α′+ = − + + − −   
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                             5 1 1 2 6 2 3 3 2 02 2 ]exp( )A A A A A A i Tα α ω− −  

                             
3

4 2 2 0exp(3 )A i Tα ω−  

               
2

5 2 1 2 1 0exp( ( 2 ) )A A i Tα ω ω− +  

            
2

5 2 1 2 1 0exp( ( 2 ) )A A i Tα ω ω− − −   

            
2

6 2 3 2 3 0exp( ( 2 ) )A A i Tα ω ω− − +  

            
2

6 2 3 2 3 0exp( ( 2 ) )A A i Tα ω ω− − −  

                           2 2 2 0 2[ exp( ( ) )
2

G A i Tω τ+ Ω + +    

                    2 2 2 0 2exp( ( ) )] ,A i T ccω τ+ Ω − + +        (14) 
 

2 2 2
0 3 31 3 3 3 3 4 2 2 7 3 3( ) [ (2 ) 3D q i A A i A A Aω ω µ µ ω α′+ = − + − −   

                                  8 3 1 1 9 3 2 2 3 02 2 ]exp( )A A A A A A i Tα α ω− −  

                                  
3

7 3 3 0exp(3 )A i Tα ω−  

                                  
2

8 3 1 3 1 0exp( ( 2 ) )A A i Tα ω ω− +  

                                 
2

8 3 1 3 1 0exp( ( 2 ) )A A i Tα ω ω− − −   
                                 2

9 3 2 3 2 0exp( ( 2 ) )A A i Tα ω ω− − +  

                                 
2

9 3 2 3 2 0exp( ( 2 ) )A A i Tα ω ω− − −                                                          

                                 3 3 3 0 3[ exp( ( ) )
2
H A i Tω τ+ Ω + +     

                         1 3 3 0 3exp( ( ) )] .A i T ccω τ+ Ω − + +     (15) 
where the prime indicates the derivative with respect to T1.  
 
3.1 PRINCIPAL PARAMETRIC AND PRIMARY INTERNAL 
RESONANCES  
 The case of principal parametric (subharmonic) 
resonance will be considered for the three modes of 
vibrations simultaneously. The considered resonance case 
occurs when Ω1 ≈ 2ω1, Ω2 ≈ 2ω2 and Ω3 ≈ 2ω3 in the 
presence of primary internal resonance between three 
modes of vibration (ω1 = ω2 = ω3 ). The closeness of the 
resonances is described by introducing the external 
detuning parameters σ1 , σ2, and σ3 as  
 
Ω1 = 2ω1 + ε σ1,  Ω2 = 2ω2 + ε σ2 and Ω3 = 2ω3  + ε σ3 .          
(16) 
 
Using (16) in eliminating terms that produce secular terms 
from equations (13-15), gives the solvability conditions as 
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2
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2
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Substituting the polar coordinates notation  
1 exp( ),
2k k kA a iθ=  k = 1,2,3                    (20)

                                                  
into equations (17-19), where ak and θk are the steady-state 
amplitudes and the phases of the motions respectively, then 
separating the real and imaginary parts gives the governing 
equations of the amplitudes аk and phases γ i 
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4
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          23 1
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ω ω
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3
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2
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1 cos
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2 8
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ω
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         26 2
2 3 5 4
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sin sin ,
8 4

Gaa aα γ γ
ω ω
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3
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       2 25 6 2
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3
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4
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         29 1
3 2 8 7
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4 2

Haa aα γ γ
ω ω
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where  
θ = θ2 – θ1, θ4 = θ3 – θ2, θ5 = θ1 – θ2, θ6 = θ2 – θ3, γ1 = σ1 T1 – 
2θ1, γ2 = 2(θ2 – θ1) – (σ2 – σ1)T1, γ3 = 2(θ3 – θ1) – (σ3 – σ1)T1, 
γ4 = σ2 T1 – 2θ2, γ5 = 2(θ3 – θ2) – (σ3 – σ2)T1, γ6 = 2(θ1 – θ2) – 
(σ1 – σ2)T1, γ7 = σ3 T1 – 2θ3, γ8 = 2(θ2 – θ3) – (σ2 – σ3)T1, γ9 = 
2(θ1 – θ3) – (σ1 – σ3)T1. 
 
The above equations (21-26) are solved numerically to find 
the steady-state responses of the three modes of vibrations, 
which correspond to constant solutions, that is correspond 
to 1,2,3 0a′ = and 1,4,7 0.γ ′ =  Hence the fixed points of 

equations (21-26) are given by  
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2
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3 3

3
4 2 2
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4

a a a a a a
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α α ασ
ω ω ω

αω µ θ γ
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= + +
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           29 1
3 2 8 7
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4 2
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From equations (27-32), we have the following possible 
solutions: 
 
Case 1: Squaring equations (27) and (28), then adding the 
squared results together gives the following frequency 
response equation: 
 

( )
2

6 2 2 41 1 1 1
1 2 2 3 3 12

1 1 1

2 2
4 4 2 2 2 23 2 32
2 3 1 1 2 32

1 1 1

3 3 3
4 4 2

3 3
4 4 2

a a a a

a a a a

α α α σα α
ω ω ω

α α αα µ σ
ω ω ω

    
+ + −    

    
      
+ + + + +     
      

2
2 2 21 2

2 2 3 3 1 1 4 2 1
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2( )
2 2

Fa a a a aσ ωα α µ µ
ω ω ω

       
− + − +       
      

2

4 2 2

1

.aµ ω
ω

 
+ 
 

                                           (33) 

 
Case 2: Squaring equations (29) and (30), then adding the 
squared results together gives the following frequency 
response equation: 

( )
2

6 2 2 44 4 4 2
2 5 1 6 3 22

2 2 2

2 2
4 4 2 25 6
1 3 2 2

2 2

3 3 3
4 4 2

3 3
4 4

a a a a

a a

α α α σα α
ω ω ω

α α µ σ
ω ω

    
+ + −    

    
    
+ + + +   
      

2
2 2 2 2 25 6 1
1 3 5 1 6 3 22

2 2 2

( )
2 2 2

Ga a a a aα α σ α α
ω ω ω

     
+ − + −     
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( )
2
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    
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    
2

5 3 3 1 3 4 5 1 3
2

2 2
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   
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Case 3: Squaring equations (31) and (32), then adding the 
squared results together, gives the following frequency 
response equation: 

( )
2

6 2 2 47 7 7 3
3 8 1 9 2 32

3 3 3

2 2
4 4 2 28 9
1 2 3 3

3 3

3 3 3
4 4 2

3 3
4 4

a a a a

a a

α α α σα α
ω ω ω

α α µ σ
ω ω

    
+ + −    
     

    
+ + + +   
    

2
2 2 2 2 28 9 3
1 2 8 1 9 3 32

3 3 3

( )
2 2 2

Ha a a a aα α σ α α
ω ω ω

     
+ − + −     
      

 

2

5 2 22
3 5 2 3

3 3

2 .aa a µ ωω µ µ
ω ω

    
+ +    
     

           (35) 

 
4. FREQUENCY RESPONSE SOLUTIONS 
 The periodic solutions corresponding to the fixed 
points of equations (21-26) for simultaneous internal and 
principle parametric resonances of the three modes are 
obtained when 1,2,3 0a′ = and 1,4,7 0.γ ′ =  From the resulting 

equations, the frequency response equations (33-35) are 
obtained and solved numerically. The numerical results are 
presented Figs. (1-3) as the amplitudes a1,2,3 against the 
detuning parameters σ1,2,3 for different values of the system 
parameters. 
 
4.1 RESPONSE CURVES OF CASE 1 AND 2: 

Considering Fig. (1a) as a basic case for comparison, it 
can be seen from Figs. (1b) and (1c) that as the viscoelastic 
coefficient α and the nonlinear coefficient δ increase, the 
steady state amplitude of the first mode a1 decreases. More 
increase in δ leads the curves to be bent to the right 
indicating strong hardening nonlinearity effect. Whereas 
more decrease in δ can eliminate the possibility of the 
appearance of jumps. It can be seen from Fig. (1d) that as the 
axial moving speed c increases, the curves are shifted 
upward without any change in the magnitude of the 
amplitude a1. While Fig. (1e) shows that as the natural 
frequency ω1 by increasing the flexural stiffness β, the 
branches of the response curves converge to each other and 
the region of unstable solutions decreases. Figure (1f) 
indicates that as the parametric excitation F increases, the 
amplitude a1 is increased. The response curves in Fig. (1g) 
are shifted upward with small increase in the amplitude a1 
as the steady-state amplitude of the second mode a2 is 
increased. Whereas, the resonant response curves in Fig. (1h) 
are shifted to right as the steady-state amplitude of the third 
mode a3 is increased. 

a)  
 

b)  
 

c)  
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d)  
 

e)  
 

f)  
 

g)  
 

h)  
 
Fig. 1 Resonant frequency response curves for the first mode of 
the system, where a2 = 0.01 and a3 = 0.02. 
   
 For the second case, the steady-state amplitude a2 is 
plotted against the detuning parameter σ2, as shown in Fig. 
(2). Figures (2b), (2c), (2e)-(2h) illustrate similar effects of the 
system parameters to those reported in case 1. But in Fig. 
(2d), significant increase is noticed in the axial moving speed 
c as the steady-state amplitude a2 is increased. 
 
4.2 RESPONSE CURVES OF CASE 3: 
 Different frequency response curves for the third 
mode of vibration are shown in Fig. (3), where effects of the 
parameters illustrate similar effects to those in case 1 except 
Fig. (3d), which shows that the steady-state amplitude a3 
decreases as the axial moving speed c is increased. 
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a)  

b)  

c)  

d)  

e)  

f)  
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g)  

h)  
 
Fig. 2 Resonant frequency response curves for the second mode 
of the system, where a1 = 0.01 and a3 = 0.02. 
 

a)  

b)  

c)  

d)  
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e)  

f)  

g)  

h)  
 
Fig. 1 Resonant frequency response curves for the third mode of 
the system, where a1 = 0.05 and a2 = 0.03. 
  
5. CONCLUSION 
 The steady-state response of a three degree of 
freedom viscoelastic beam under parametric excitations is 
investigated, where internal as well as external resonance 
conditions have been considered. The method of multiple 
scales is applied to determine the simultaneous primary 
internal and parametric external resonance case and to study 
the effects of different parameters on system response. Three 
cases for the frequency response curves have been presented 
and investigated to illustrate the effects of viscoelastic 
coefficient, nonlinear coefficient, axial moving speed, the 
flexural stiffness, parametric forcing amplitudes and the 
steady-state amplitudes of the three modes of vibration. The 
following may be concluded: 
 

1. The system has various interesting phenomenon 
such as jumps, multi-valued solutions, and 
hardening nonlinearities. 

2. The steady-state amplitudes a1,2,3 of the three modes 
are monotonic decreasing functions in the 
viscoelastic coefficient α. 

3. The steady-state amplitudes a1,2,3 are monotonic 
decreasing functions in the nonlinear coefficient δ. 
More decrease in δ may eliminate the possibility of 
the appearance of jumps. 

4. The axial moving speed c affects the steady-state 
response in various ways. For the first mode, it 
shifts the frequency response curves upward, while 
as c increases, steady-state amplitude of the second 
mode is increased but the stead-state amplitude of 
the third mode is decreased. 

5. The steady-state amplitudes a1,2,3 are monotonic 
decreasing functions in the flexural stiffness β and 
the natural frequencies ω1,2,3. 

6. The steady-state amplitudes a1,2,3  are monotonic 
increasing functions in the parametric forcing 
amplitudes F, G and H. 
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